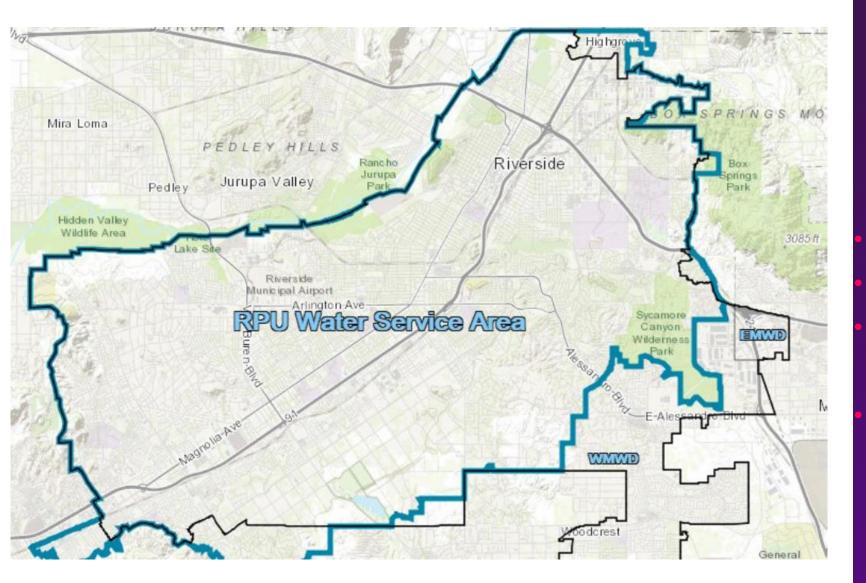
OCTOBER 29, 2024

Making Life Easier in Water Operations

AVEVA Industrial Intelligence Summit

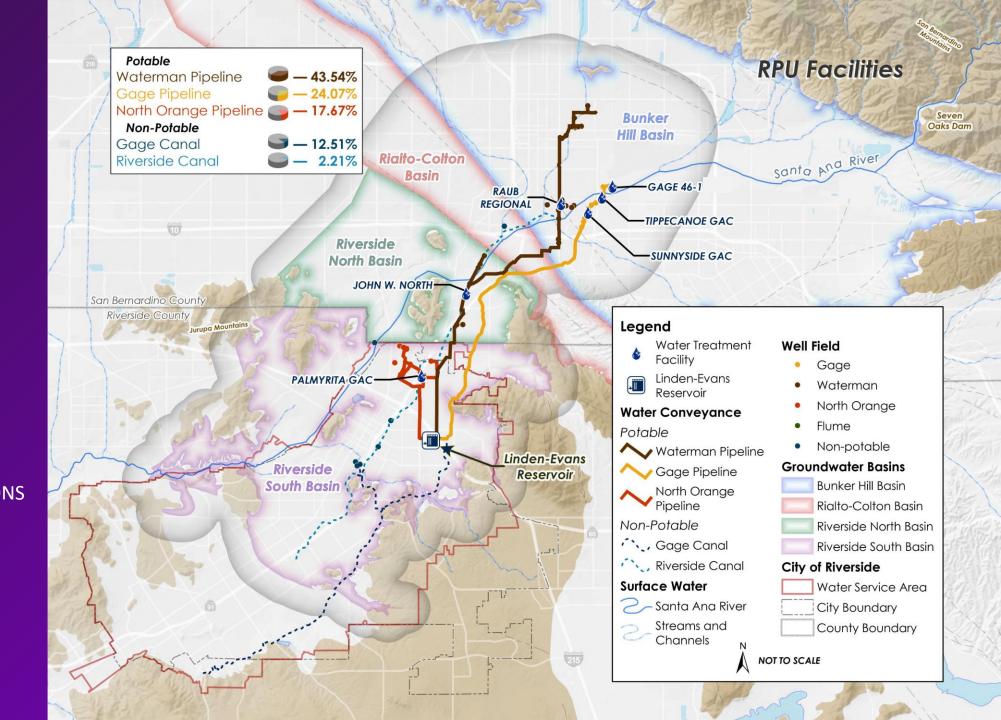
Robin Glenney – Riverside Public Utilities


© 2023 AVEVA Group plc and its subsidiaries. All rights reserved.

• Riverside Public Utilities

- Utilizing PI to simplify processes
- Return on Investment
- Q&A

Riverside Public Utilities



City of Riverside Public Utilities

60 miles east of Los Angeles
Established in 1895
Consumer owned Electric
and Water Utility
81 square mile service territory

RPU STATS

46 POTABLE WELLS
6 NON-POTABLE WELLS
16 RESERVOIRS
108 MG OF STORAGE
1,000+ MILES OF PIPELINE
68,000+ SERVICE CONNECTIONS
6 TREATMENT PLANTS
42 ION EXCHANGE VESSELS
53 GAC VESSELS



PI Vision

UPDATED DAILY REPORT

- 4-HOURS A DAY TO SEND OUT PREVIOUS DAY'S INFORMATION
- DATA AVAILABLE TO ALL STAFF IN REAL TIME

PI Vision

BLEND SUMMARY

- OVER 500 CALCULATIONS RUN EVERY 2 MINUTES
- CONNECTED TO WATERTRAX AND SCADA
- TEXT AND EMAIL ALERTS
- IMPERATIVE TO KEEP UP WITH CHANGING REGULATIONS AND PSPS EVENTS

PI Vision

Current Water Production Well Flow Rate

Waterman

Name	Value 🔺	Trend 🔺	Average	Maximum	Units
Raub 7 Flow Rate GPM	0		0	0	gpm
Stiles Flow Rate GPM	0		0	0	gpm
Thorne 12 Flow Rate GPM	0	711_7	276.86	1,078.2	gpm
Hunt 10 Flow Rate GPM	0.32813	HEALANNE	0.23065	0.98438	gpm
Cooley H Flow Rate GPM	1,116.2	uhannahar	1,125.6	1,204.2	gpm
Cooley I Flow Rate GPM	1,136.7	1	1,118.1	1,211.2	gpm
Warren 1 Flow Rate GPM	1,203.4	1-1-1	1,052.4	1,425.1	gpm
Garner 5 Flow Rate GPM	1,215.4	Inalur	1,253.8	1,452.8	gpm
Garner 6 Flow Rate GPM	1,484.1		1,468.2	1,564.6	gpm
Raub 6 Flow Rate GPM	1,555.3		986.37	1,673.5	gpm
Garner 7 Flow Rate GPM	1,807.1		1,713.4	2,057.3	gpm
Raub 8 Flow Rate GPM	1,928.2	TTUT	1,550.3	2,044.6	gpm
Raub 4R Flow Rate GPM	2,149.1		2,093.9	2,286.4	gpm
Raub 5R Flow Rate GPM	2,355.4	l	2,345.9	2,569.4	gpm
Cooley J Flow Rate GPM	2,456.3		2,448.4	2,638.3	gpm
Scheuer Flow Rate GPM	2,466.5	Nonecostration	2,491	2,742	gpm
Warren 4R Flow Rate GPM	2,595.3	TTT	2,353.9	2,772.3	gpm

Gage

0					
Name	Value 🔺	Trend 🔺	Average	Maximum	Units
Gage 26-1 Flow Rate GPM	0	L	29.492	1,415	gpm
Gage 27-1 Flow Rate GPM	0		0	0	gpm
Gage 31-1R Flow Rate GPM	0		0	0	gpm
Gage 56-1 Flow Rate GPM	0	<u>Uddahiliji</u> gayaana	28.029	85.04	gpm
Gage 92-2 Flow Rate GPM	0		0	0	gpm
Gage 92-3 Flow Rate GPM	0		0	0	gpm
Gage 27-2 Flow Rate GPM	540		498.57	569	gpm
Gage 51-1 Flow Rate GPM	1,070	MANAMORPHI	1,052.4	1,232	gpm
Gage 46-1R Flow Rate GPM	1,322.1	JJJ	1,091.4	1,460.7	gpm
Gage 29-2 Flow Rate GPM	1,402.9	[]	1,300.3	1,572.4	gpm
Tippecanoe Flow Rate GPM	1,557.8	mont	1,554.8	1,610.4	gpm
Gage 66-1 Flow Rate GPM	1,702.3	NALILANAALIN	1,696.4	1,926.2	gpm
Gage 92-1 Flow Rate GPM	2,249	TIPIP	2,216.1	2,259	gpm
Gage 98-1 Flow Rate GPM	2,520.5	tophymeric and the	2,512.2	2,632.3	gpm
Gage 29-3R Flow Rate GPM	2,545.3		2,540.8	2,580.8	gpm

Transmission Mains

Name	Value 🔺	Trend 🔺	Average	Maximum	Units
Gage - Bunker Hill Flow Rate G	0		0	0	gpm
Weir #2 Weir Flow Rate GPM	4,083.9	Monthering		6,458.9	gpm
JW North JW North Flowrate	4,307.1	าสุขารระสาร	5,656.5	8,352.3	gpm
North Orange Flow Rate	6,457	~~w/pl	7,590.2	12,351.4	gpm
Gage Flow Rate GPM	9,590.6	"	9,209.5	11,931.3	gpm
Linden Evans Flow Rate GPM	46,600	Mrss Mary	46,092	53,368.8	gpm

WELL FLOW RATES

- ALLOWS STAFF, WITHOUT SCADA, TO SEE WHAT SOURCES ARE ACTIVE, FLOW RATES AND TRENDS
- MOBILE VERSION FOR SAMPLERS

North Orange

arner B Flow Rate GPM arner B Flow Rate GPM arner C Flow Rate GPM arner D Flow Rate GPM loore Griffith/Flow Rate GPM lectric Street Flow Rate GPM almyrita Flow Rate GPM	Value 🔺	Trend 🔺	Average	Maximum	Units
Brunton 1R Flow Rate GPM	0	TLUNI	786.54	3,256.3	gpm
Garner B Flow Rate GPM	0		0	0	gpm
Garner C Flow Rate GPM	0		387.17	1,942.9	gpm
Garner D Flow Rate GPM	0		92.856	1,551.8	gpm
Moore Griffith Flow Rate GPM	915.31	mlim	901.86	974.3	gpm
Electric Street Flow Rate GPM	1,341	muhum	1,314.1	1,456.7	gpm
Palmyrita Flow Rate GPM	1,679.7	mulum	1,646.8	2,022.2	gpm
Twin Springs Flow Rate GPM	2,529.9		2,459.8	2,642.8	gpm

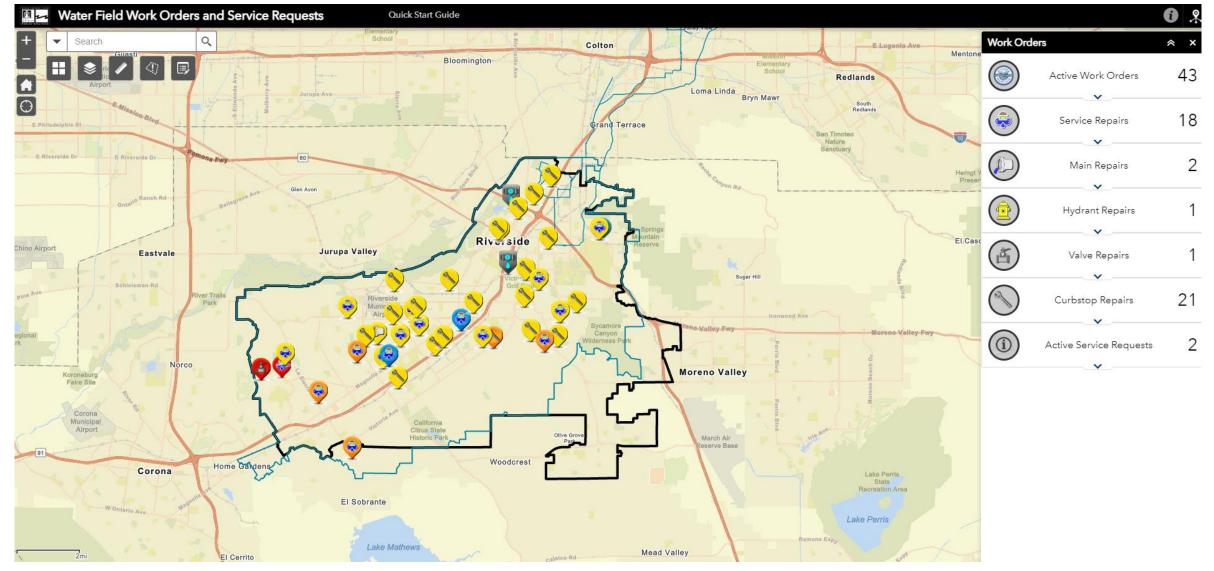
Riverside North

Name	Value 🔺	Trend 🔺	Average	Maximum	Units
Van Buren1 Flow Rate GPM	0		0	0	gpm
Van Buren2 Flow Rate GPM	0		0	0	gpm
Flume 2 Flow Rate GPM	891.5	1	899.01	1,000.8	gpm
Flume 3 Flow Rate GPM	1,537	+	1,540.9	2,108.6	gpm
Flume 7 Flow Rate GPM	1,680.5	7	1,689.9	1,784.3	gpm
Flume 4 Flow Rate GPM	1,723.7	T	1,726.7	1,769.2	gpm

WMWD

Name	Value 🔺	Trend 🔺	Average	Maximum	Unit
WMWD WMWD Mockingbird FI	0		0	0	gpm
WMWD WMWD Warmington Fl	0		0	0	gpm
WMWD WMWD Green Orchard	0.4375		0.65884	1.8594	gpm

AVEVA


Flow rate @ 10/15/2024 2:46:00 PM

View 365 Day Flow Trends

PI Vision

WORK ORDERS AND SERVICE REQUESTS

- INTEGRATES GIS AND ASSET MANAGEMENT SYSTEM
- ALLOWS STAFF TO PRIORITIZE WORK, AND COMPLETE WORK BY PROXIMITY

Utilizing PI to Simplify Processes PI Datalink

CT Compliance Worksheet

Water System Name: C	ity of Riverside		
System Number: 3	310031		
Month and Year: S	ep-24		
Section - North Orange & Waterman Transmission Line @ Lin	den 3,064,387	Gallons	
Short-Circuiting Factor for Pipeline	1.00	T ₁₀ /T	
Required Log Inactivation of Virus:	4.0	Log	

			North	Orange Tr	ansmission l	Line				
Dat	Hourly Flow Rate @ Lowest Residual, gpm	Temperature	Lowest Chlorine Residual, mg/L	Max. pH	Effective Contact Time (T ₁₀), minutes	Calculated CT₁	Sum of Calculated CT ₁₁	Required CT	CT Ratio (CT ₁₁ /CT)	Calculated Log Inactivation
⊾ 1	40,109	23.4	0.61	6.9	76	46	46	2	20	80
n 2	42,841	23.5	0.42	6.9	72	30	30	2	13	53
. 3	42,366	23.8	0.51	7.0	72	37	37	2	16	66
4 ا	40,680	23.4	0.51	6.9	75	39	39	2	17	66
. 5	37,454	24.5	0.39	6.9	82	32	32	2	15	60
; 6	40,069	24.3	0.53	6.9	76	41	41	2	19	76
. 7	42,183	24.1	0.53	7.0	73	39	39	2	18	71
n 8	41,220	23.9	0.54	7.0	74	40	40	2	18	72
n 9	41,966	23.9	0.52	6.9	73	38	38	2	17	69
。 10	42,138	23.8	0.51	6.9	73	37	37	2	17	67
a 11	39,724	23.4	0.59	6.9	77	45	45	2	20	78
u 12	38,034	23.3	0.53	6.9	81	43	43	2	18	74
; 13	37,684	23.8	0.46	7.0	81	37	37	2	17	66
· 14	41,851	23.5	0.42	7.0	73	30	30	2	13	53
n 15	33,882	23.2	0.64	6.9	90	57	57	2	24	97
n 16	35,387	23.5	0.56	6.9	87	48	48	2	21	84
. 17	36,178	23.0	0.60	6.9	85	51	51	2	21	85
4 18	35,190	23.2	0.64	6.9	87	56	56	2	24	95
. 19	33,888	22.9	0.65	6.9	90	59	59	2	24	97
; 20	35,325	22.9	0.58	6.9	87	50	50	2	21	83
. 21	31,705	22.7	0.50	6.9	97	48	48	2	20	78
n 22	37,347	23.5	0.60	6.9	82	49	49	2	21	86
n 23	-	23.3	0.55	6.9	82	45	45	2	19	76
. 24	37,218	23.2	0.58	6.9	82	48	48	2	20	81
4 25	37,228	22.6	0.51	6.9	82	42	42	2	17	67
26	37,150	22.5	0.50	6.9	82	42	42	2	17	67
; 27	34,909	23.0	0.39	6.9	88	35	35	2	14	58
. 28	37,164	22.4	0.62	6.9	82	51	51	3	20	81
n 29		23.3	0.60	6.9	91	54	54	2	23	93
. 30	-	23.0	0.53	6.9	82	43	43	2	18	72

MONTHLY CT REPORTS

- 1 PER TRANSMISSION MAIN AND MEMBRANE PLANT
- DATALINK REPORT SET UP ONCE
- MONTHLY ENTER DATE RANGE
- PRINT AND SUBMIT
- ALSO USED FOR TURBIDITY REPORTING

	A	В	С	D	E	F	
1	NO CT Calc						Γ
2							
3	Start Time	9/1/2024					
4	End Time	10/1/2024					
5							
6		\\PU-PIAFAPPRD\Wate	\\PU-PIAFAPPRD\\	\\PU-PIODMSDA\	LIND.BSTRN	\\PU-PIODMSDA	1
7							
8		Minimum CI each day	Associated GPM	Associated Temp	Temp in C	Associated pH	
9							
0	01-Sep-24 01:34:00	0.61	40109	74	23	6.928688	į
1	02-Sep-24 08:02:00	0.42	42841	74	24	6.933938	į
2	03-Sep-24 10:34:00	0.51	42366	75	24	6.973313	1
3	04-Sep-24 01:28:00	0.51	40680	74	23	6.947937	1
4	05-Sep-24 10:10:00	0.39	37454	76	24	6.937875	j
5	06-Sep-24 07:42:00	0.53	40069	76	24	6.93875	j
6	07-Sep-24 11:30:00	0.53	42183	75	24	6.9615	j
7	08-Sep-24 07:14:00	0.54	41220	75	24	6.950125	j
8	09-Sep-24 22:56:00	0.52	41966	75	24	6.932188	J
9	10-Sep-24 08:58:00	0.51	42138	75	24	6.9265	j
0	11-Sep-24 11:08:00	0.59	39724	74	23	6.920375	j
1	12-Sep-24 12:38:00	0.53	38034	74	23	6.92125	j
2	13-Sep-24 12:58:00	0.46	37684	75	24	6.96325	j
3	14-Sep-24 13:42:00	0.42	41851	74	24	6.972438	3
4	15-Sep-24 09:52:00	0.64	33882	74	23	6.906813)
25	16-Sep-24 15:00:00	0.56	35387	74	23	6.941375	j.
6	17-Sep-24 10:04:00	0.60	36178	73	23	6.9195	ł
7	18-Sep-24 17:18:00	0.64	35190	74	23	6.936125	į
8	19-Sep-24 09:42:00	0.65	33888	73	23	6.909)
9	20-Sep-24 10:18:00	0.58	35325	73	23	6.938313	J
0	21-Sep-24 09:54:00	0.50	31705	73	23	6.915125	j
1	22-Sep-24 16:06:00	0.60	37347	74	23	6.937438)
2	23-Sep-24 12:10:00	0.55	37397	74	23	6.93525	i
3	24-Sep-24 13:24:00	0.58	37218	74	23	6.937438	1
4	25-Sep-24 09:32:00	0.51	37228	73	23	6.926063	1
5	26-Sep-24 07:16:00	0.50	37150	73	23	6.912938	;
6	27-Sep-24 12:06:00	0.39	34909	73	23	6.922563	1
37	28-Sep-24 06:28:00	0.62	37164	72	22	6.908125	j
88	29-Sep-24 17:20:00	0.60	33774	74	23	6.91425	i
39	30-Sep-24 10:36:00	0.53	37175	73	23	6.923875	

Return on Investment

PI System benefits

Return on Investment

- Improved operational efficiencies
- Reduced staff time by automating processes
- Increased visibility into systems and assets
- Improved system reliability
- Reduced operating costs
- \$1,000,000 in savings per year (Electric and Water)

Questions

Robin Glenney

rglenney@riversideca.gov

© 2023 AVEVA Group plc and its subsidiaries. All rights reserved.

This presentation may include predictions, estimates, intentions, beliefs and other statements that are or may be construed as being forward-looking. While these forward-looking statements represent our current judgment on what the future holds, they are subject to risks and uncertainties that could result in actual outcomes differing materially from those projected in these statements. No statement contained herein constitutes a commitment by AVEVA to perform any particular action or to deliver any particular product or product features. Readers are cautioned not to place undue reliance on these forward-looking statements, which reflect our opinions only as of the date of this presentation.

The Company shall not be obliged to disclose any revision to these forward-looking statements to reflect events or circumstances occurring after the date on which they are made or to reflect the occurrence of future events.

ABOUT AVEVA

AVEVA is a world leader in industrial software, providing engineering and operational solutions across multiple industries, including oil and gas, chemical, pharmaceutical, power and utilities, marine, renewables, and food and beverage. Our agnostic and open architecture helps organizations design, build, operate, maintain and optimize the complete lifecycle of complex industrial assets, from production plants and offshore platforms to manufactured consumer goods.

Over 20,000 enterprises in over 100 countries rely on AVEVA to help them deliver life's essentials: safe and reliable energy, food, medicines, infrastructure and more. By connecting people with trusted information and AI-enriched insights, AVEVA enables teams to engineer efficiently and optimize operations, driving growth and sustainability.

Named as one of the world's most innovative companies, AVEVA supports customers with open solutions and the expertise of more than 6,400 employees, 5,000 partners and 5,700 certified developers. The company is headquartered in Cambridge, UK.

Learn more at www.aveva.com