**OCT 2025** 

# UNS (Unified Namespace) Architecture with AVEVA System Platform

Ahmed Aly Khalil



# Agenda

- 1. Introduction to UNS (Unified Namespace)
- 2. UNS Architecture Example
- 3. System platform Useful features/capabilities for UNS



# Introduction to UNS (Unified Namespace)



# What is Unified Namespace (UNS)?

- The **structure**
- A single source of truth
- The current state of :
  - Layers (Namespaces),
  - events,
  - data and information models contextualized and normalized
- The **hub**
- The architectural foundation for **Digital** Transformation



## Why: the *Unified Namespace* (UNS) is needed

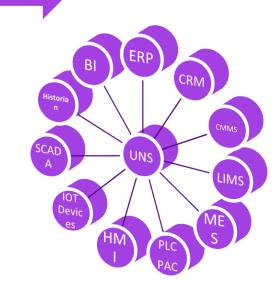
#### ISA 95 / IEC 62264 standards framework

For Integrating Enterprise and Control Systems

Traditional Industrial Automation Integration is aligned around point-to-point connections, passing data thru each level in the Technology Stack.

#### Point-To-Point Integration

**Traditional Industrial Automation Integration** 


**Inconsistent Naming Conventions Inconsistent Structure and Context** Difficult to maintain & scale Data Isolation and Silos (Software Sprawl) Breaks Down IT/OT Convergence

#### **Unified Namespace (UNS)** Integration

**Digital Transformation** 

Consistent (Standard) Naming Conventions Hierarchical Structure based upon (ISA 95 / IEC 62264) Data in Context (Contextual Metadata) Democratizes the Data Faster & Normalized IT / OT Convergence

## **UNS Semantic Hierarchy** Point-to-Point Data Integration Enterprise Level Level 4 Management Level Supervisory Level HMI / SCADA / Batch Level 2 Control Level PLC / PAC / RTU





Level 1 Field Level Sensors & Signals

## Why: the *Unified Namespace* (UNS) is needed

#### ISA 95 / IEC 62264 standards framework

For Integrating Enterprise and Control Systems

Traditional Industrial Automation Integration is aligned around point-to-point connections, passing data thru each level in the Technology Stack.

### Enterprise Level Level 4 Management Level Level 3 Supervisory Level HMI / SCADA / Batch Level 2 Control Level PLC / PAC / RTU Level 1 Field Level Sensors & Signals Level 0

**ENTERPRISE** 

SITE

**AREA** 

LINE 1

CELL 1

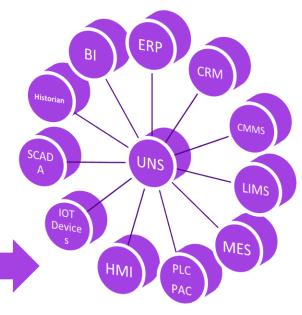
CELL 2

LINE 2

CELL 1

CELL 2

**UNS Semantic Hierarchy** 


### **Unified Namespace (UNS)** Integration

**Digital Transformation** 

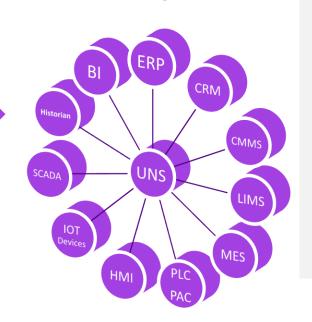
Consistent (Standard) Naming Conventions Hierarchical Structure based upon (ISA 95 / IEC 62264)

Data in Context (Contextual Metadata) Democratizes the Data

Faster & Normalized IT / OT Convergence



## How: the *Unified Namespace* (UNS) is built


**UNS Semantic Hierarchy** 

## ISA 95 / IEC 62264 standards framework

For Integrating Enterprise and Control Systems

Unified Namespace (UNS) semantic hierarchy is usually driven by the ERP systems in place as this commonly becomes the Master Data Model used within the business.

- ENTERPRISE
  - SITE
    - AREA
      - LINE 1
        - CELL 1
        - CELL 2
      - LINE 2
        - CELL 1
        - CELL 2



- ENTERPRISE
  - Functional namespace
  - Informational namespace
  - Definitional namespace
  - SITE
    - Functional namespace
    - Informational namespace
    - Definitional namespace
    - AREA
      - Functional namespace
      - Informational namespace
      - Definitional namespace
      - LINE
        - Functional namespace
        - Informational namespace
        - Definitional namespace
        - Ad-Hoc (Edge 1)
        - Ad-Hoc (Edge 2)
        - CELL
          - Functional namespace
          - Informationa namespace
          - Definitional namespace



Enterprise Leve ERP

Level 4

Management Level

Level 3

Supervisory Level
HMI / SCADA / Batch

Level 2

Control Level

PLC / PAC / RTU Level 1 Field Level

Sensors & Signals

Level 0

## How: the *Unified Namespace* (UNS) is built

## **Key Concepts**

#### **Semantic Hierarchy**

the foundation of the UNS, hierarchical structure.

#### **Descriptive Namespace**

static data and information

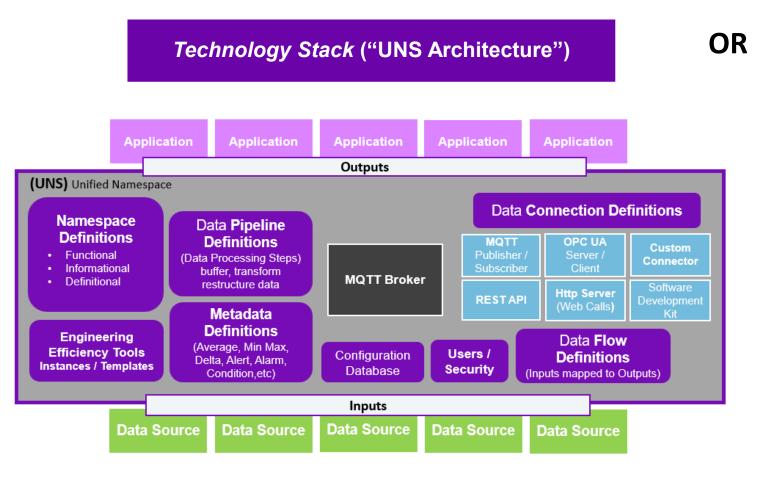
Examples asset's name, ID, location, OEM (Original Equipment Manufacturer).

#### **Functional Namespace**

Operational aspects and actions.

Examples of functional namespaces include OEE (Overall Equipment Effectiveness), Production Line, Changeover, Edge Data Ingress, and Roll Consumption.

#### **Informative Namespace**


Structured data for easy interpretation & decision.

Dashboard, Transaction, and Endpoint.



## How: does a *Unified Namespace* (UNS) work

A Unified Namespace (UNS) can mean different things to different people as it is commonly referenced as:



Software Offer used to build a "UNS" / Data Ops software



Source: Crosser Technologies



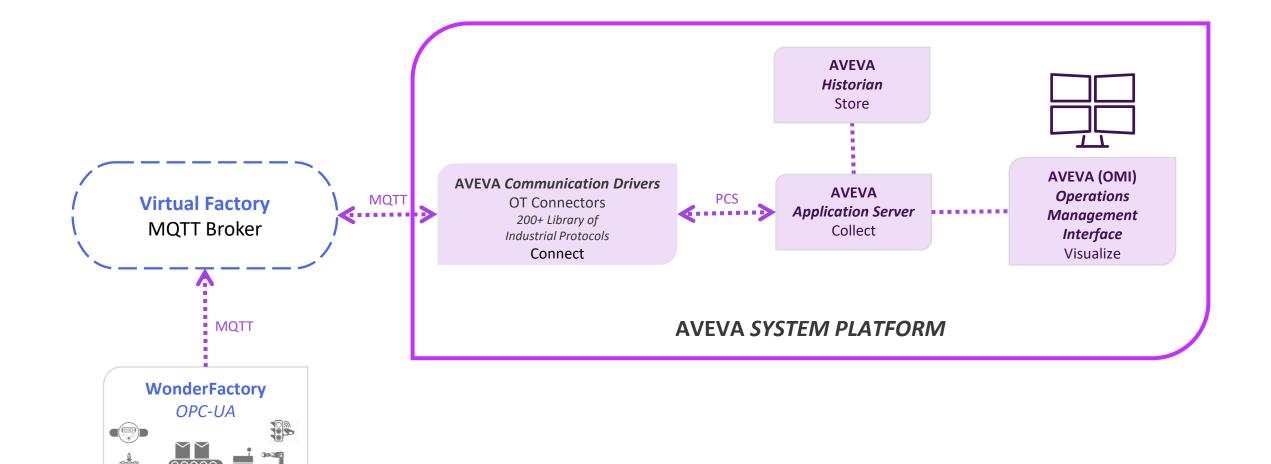
## Benefits of *Unified Namespace* (UNS)

Scalability

Normalization

Time to Value

Security


Al



# UNS Architecture Example

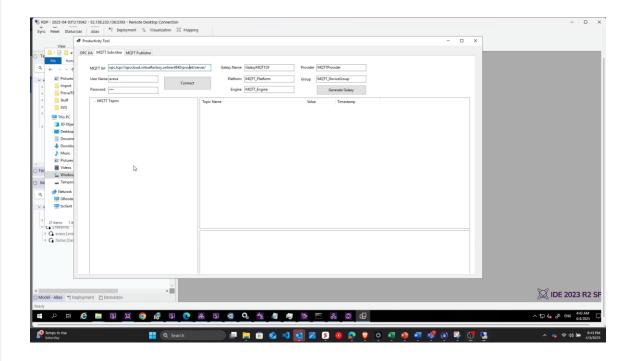


## UNS Architecture Example





## System platform Useful features/capabilities for UNS




## System platform Useful features/capabilities for UNS

- 1. System platform OPCUA server.
- 2. Publishing read only OMI app to CONNECT.
- 3. Galaxy builder Tool (Source Code coming to GitHub Planned/Subject to change ).
- 4. OMI Web Client OS agnostic download as an app from browser.
- 5. Import as SVG.



- Replicates UNS server models in System Platform using ISA-95 rules and mechanisms.
  - **OPC UA Server**
  - **MQTT Broker**
- Tag Creation and Naming convention rules:
  - Attributes = The deepest topic/metric level with a value.
  - Tag name = OPCUA Browse path / MQTT Topic path of the Level above.
  - Convert Special Delimiters("/").
  - Alias/Contained Name = topic /node
  - Galaxy Model = Hierarchy in MQTT or OPCUA









This presentation may include predictions, estimates, intentions, beliefs and other statements that are or may be construed as being forward-looking. While these forward-looking statements represent our current judgment on what the future holds, they are subject to risks and uncertainties that could result in actual outcomes differing materially from those projected in these statements. No statement contained herein constitutes a commitment by AVEVA to perform any particular action or to deliver any particular product or product features. Readers are cautioned not to place undue reliance on these forward-looking statements, which reflect our opinions only as of the date of this presentation.

The Company shall not be obliged to disclose any revision to these forward-looking statements to reflect events or circumstances occurring after the date on which they are made or to reflect the occurrence of future events.







@avevagroup

#### ABOUT AVEVA

AVEVA is a world leader in industrial software, providing engineering and operational solutions across multiple industries, including oil and gas, chemical, pharmaceutical, power and utilities, marine, renewables, and food and beverage. Our agnostic and open architecture helps organizations design, build, operate, maintain and optimize the complete lifecycle of complex industrial assets, from production plants and offshore platforms to manufactured consumer goods.

Over 20,000 enterprises in over 100 countries rely on AVEVA to help them deliver life's essentials: safe and reliable energy, food, medicines, infrastructure and more. By connecting people with trusted information and AI-enriched insights, AVEVA enables teams to engineer efficiently and optimize operations, driving growth and sustainability.

Named as one of the world's most innovative companies, AVEVA supports customers with open solutions and the expertise of more than 6,400 employees, 5,000 partners and 5,700 certified developers. The company is headquartered in Cambridge, UK.

Learn more at www.aveva.com

