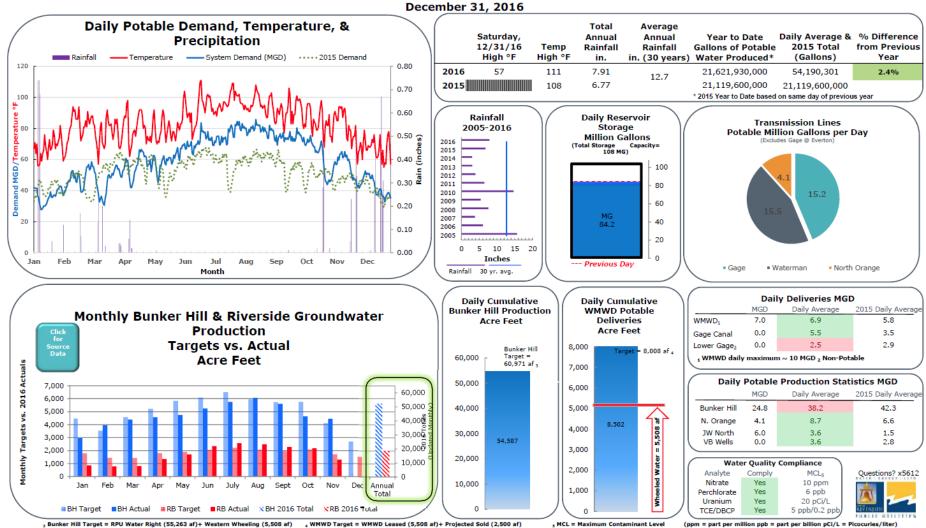
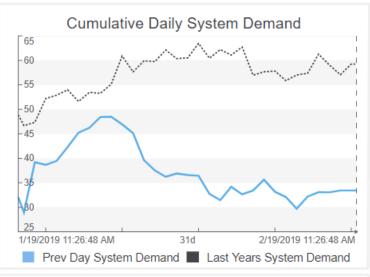
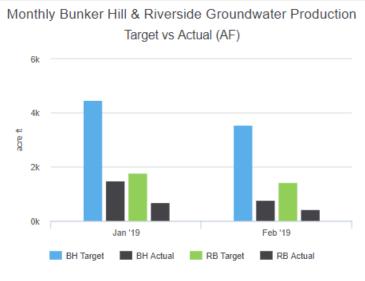

The PI System – Data Hub



Water Operations Dashboard – Prior State

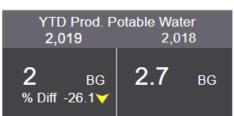
Water Operations Daily Report

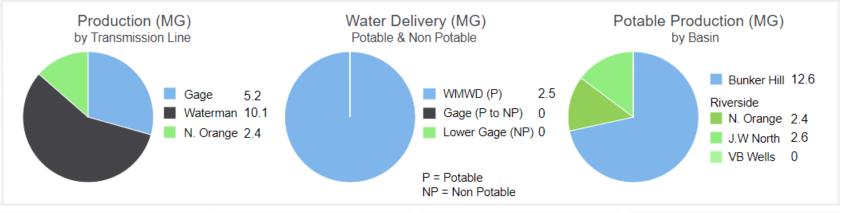


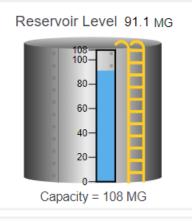


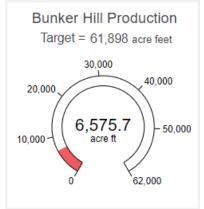
Water Operations Dashboard

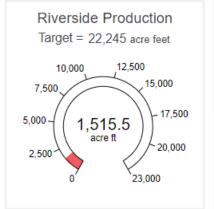
Home / Water / Water Operations

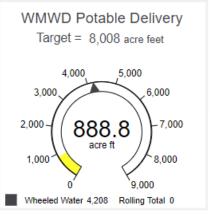








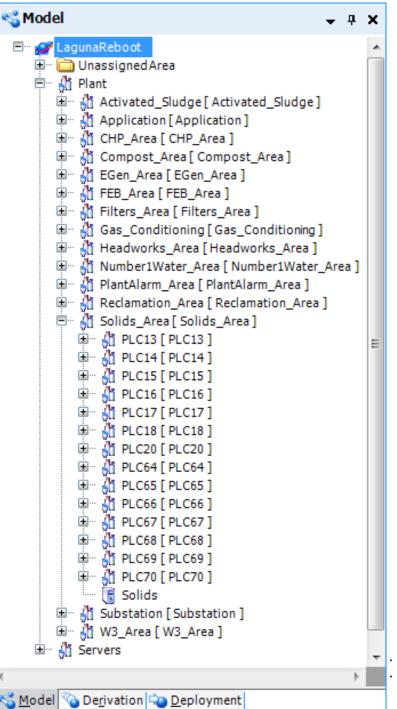




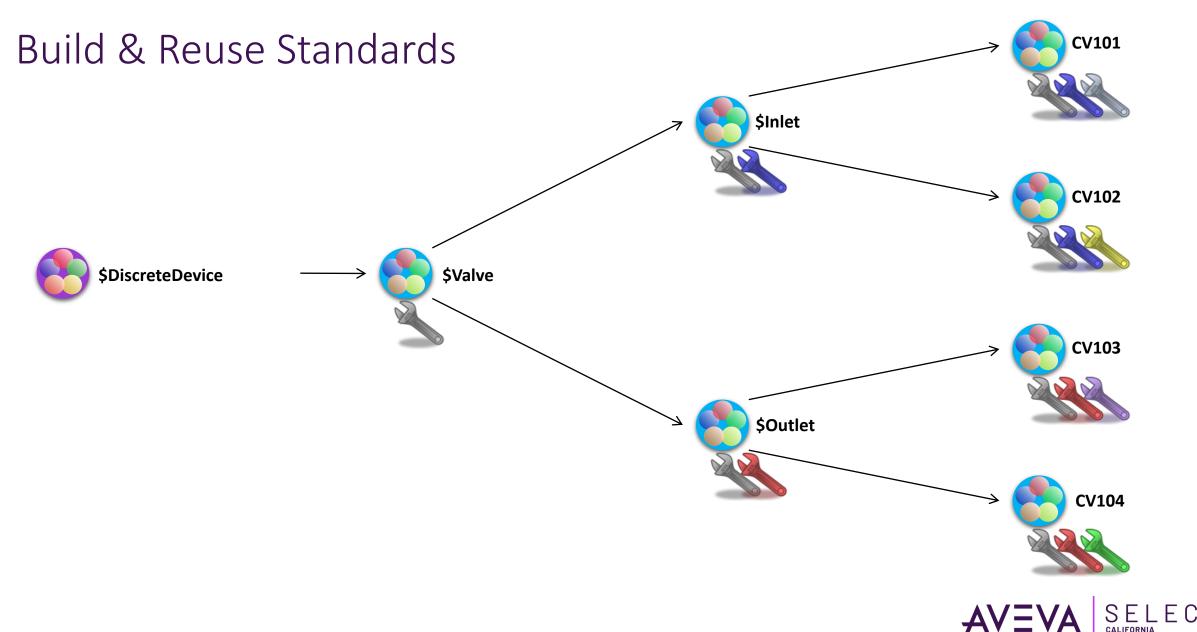
Enterprise Monitoring – Secure Browser Access to SCADA

InTouch Access Anywhere is used to extend access to HMI applications to mobile, casual and non-traditional users using a wide variety of devices enabled with an HTML5 compliant browser.

- Desktops
- Laptops
- Tablets
- •Smart phones
- •Smart TVs
- •And more!

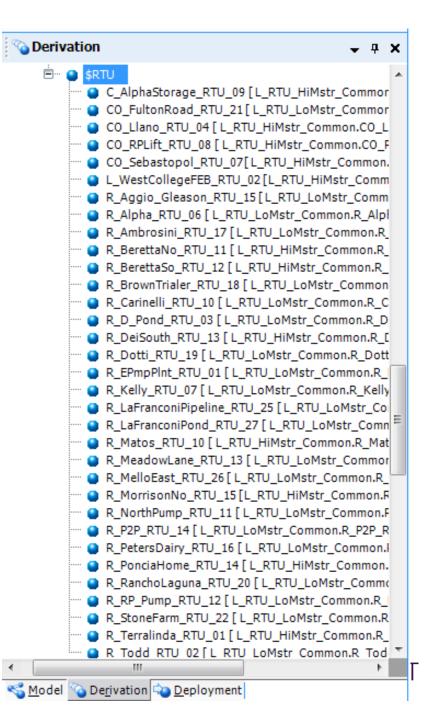


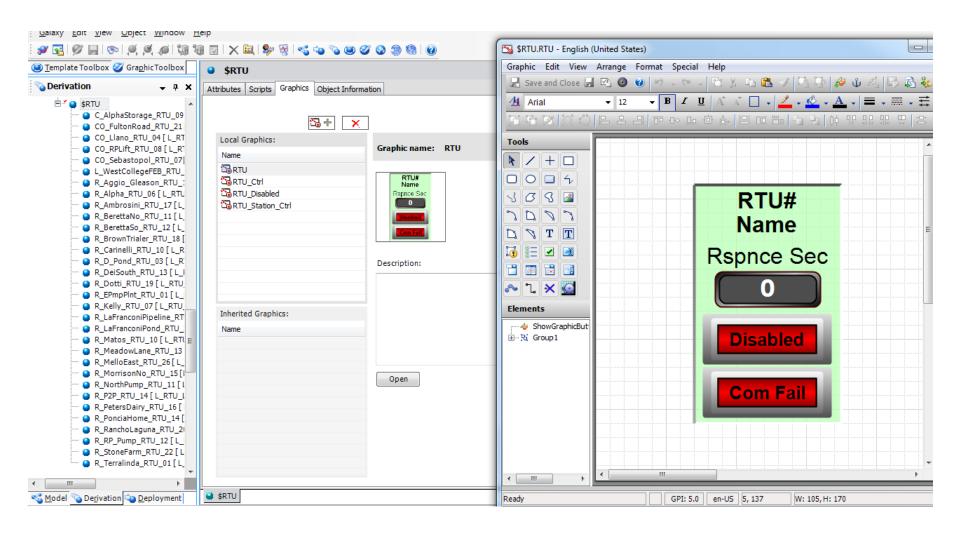
- Safari
- •Google Chrome
- Internet Explorer
- Firefox
- Opera
- •And more!



Plant Model: Example

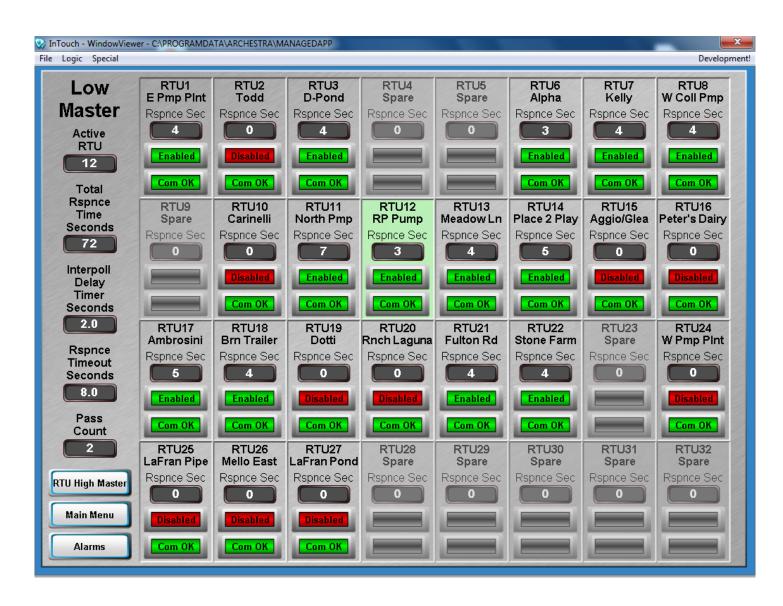
- 15 Areas
- 120 PLCs
 - 78 PLCs on the LTP Ethernet LAN
 - 36 PLCs on Serial Radios for Collection and Reuse
 - 6 PLCs on Ethernet Radios
 - 4 at LTP
 - 2 for the Reuse System


CI


Example RTU Template

Templates can be used with multiple similar equipment installations

- RTU Template
 - 36 Instances



RTU Graphic Template

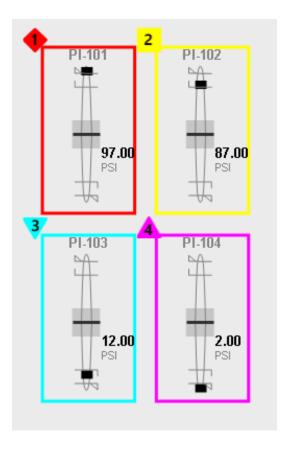
SCADA RTU Screen

Best Practice: Alarm signaling in the HMI

Severity 1 <u>Critical</u> response time < 5min

Severity 2 <u>High</u> response time < 30min

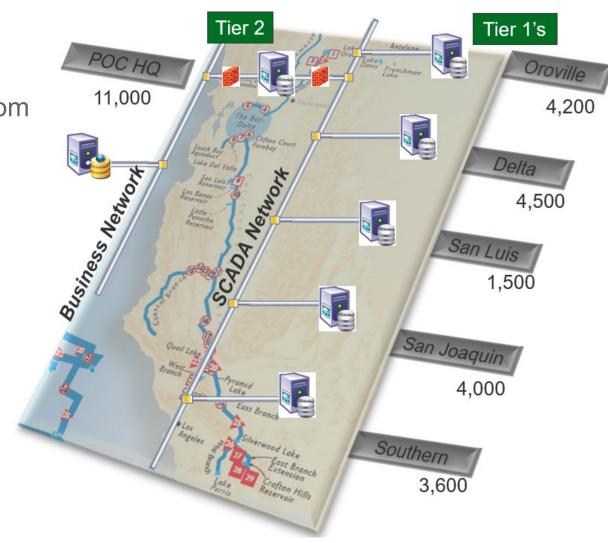
Severity 3 <u>Medium</u> response time < 60min


Severity 4 **Low** response time < 120min

Triple Coding: Shape, Color, Identifier

Priority	Safety Risk	Economic Loss	Environmental Risk
Critical	> 0.1	> \$100,000	> 0.1
High	> 0.01	> \$10,000	> 0.01
Medium	> 0.001	> \$1,000	> 0.001
Low	< 0.001	< \$1,000	< 0.001

Operational risk of the Alarms.


	operational net or the flat me.			
Priority	Operational			
Critical	Total loss of plant			
High	Loss of plant area			
Medium	Loss of equipment → loss of production			
Low	Loss of equipment without loss of production			

California State Water Project

- Secure, Centralized Data Collection & Reporting from Distributed Application
- Equipment Runtimes
- Flows, Volumes
- Operational Availability Reports
- Environmental Reports
- Water Demand Scheduling and modeling

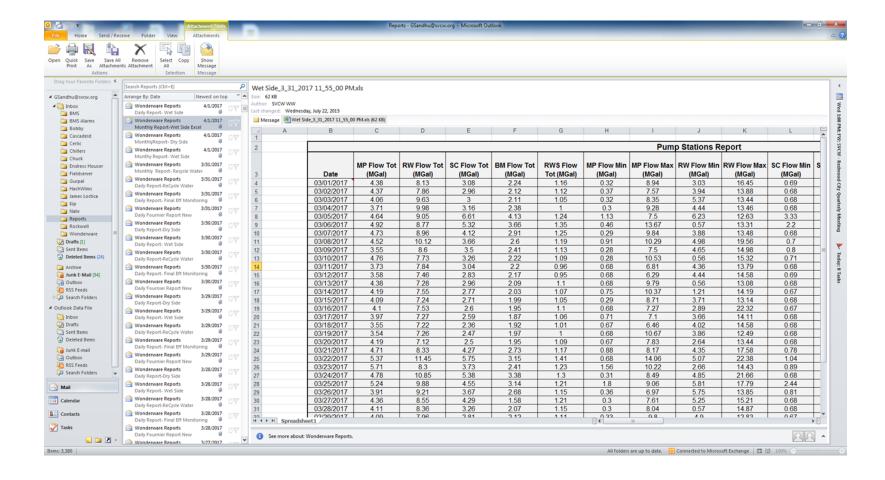
\$200k+ Savings per Year with Increased Billing Accuracy

Previously direct billed by Regional Sanitation District.

AVEVA Historian Sewer Flow Daily/Monthly Totals are now used for billing because the city's flow meters are calibrated regularly.

Discrepancies were found averaging 2-3 MGD, saving an average of 18,000 a month

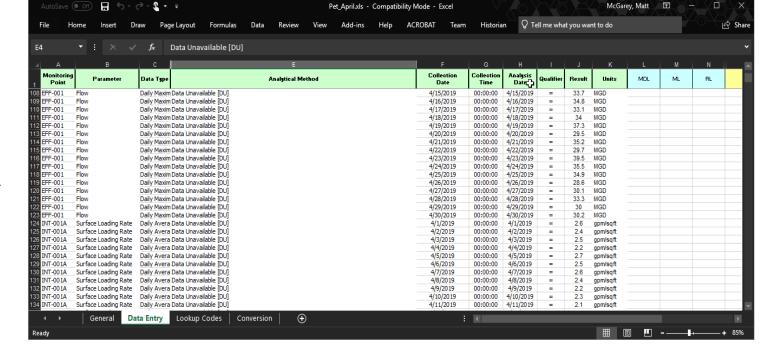
TP_STA2_TOTALFLOV		Change the month only					
TP_STA3_TOTALFLOV	V_I 2/1/2017	Change this month first					
	Do Not click "Save" when clos	e the sheetill					
	Only print out the report	o the directifi					
	Or use "Save as" to save as u	nder different namel					
	Of the Dave as to save as the	ider different flame:					
DateTime	R72_STP_STA1_TOTALFLOW	R72 STP_STA2 TOTALE	LOVR74 STP_STA3_TO	TALFLOV wwRetrievalMode			
1117 12:00:00 AM	2215.555878	8233.7854	19.84182739	CYCLIC	0.585	2.675	0.001
1/2/17 12:00:00 AM	2216.141205	8236.459961	19.84314728	CYCLIC	0.661	2.727	0.001
1/3/17 12:00:00 AM	2216.802521	8239.187012	19.84414482	CYCLIC	0.964	3.364	0.002
14/17 12:00:00 AM	2217.766724	8242.55127	19.84648132	CYCLIC	0.231	5,665	0.003
1/5/17 12:00:00 AM	2217.998047	8248.215942	19.84915352	CYCLIC	0.009	4.778	0.002
16/17 12:00:00 AM	2218.006744	8252.994385	19.8508091	CYCLIC	0.038	4.249	0.002
17717 12:00:00 AM	2218.045197	8257.243042	19.85245705	CYCLIC	0.159	4.451	#VALUE
19/17 12:00:00 AM	2218.204346	8261694336	Null	CYCLIC	0.862	8.639	#VALUE
1917 12:00:00 AM	2219.066772	8270.333252	19.86125374	CYCLIC	0.598	7.107	0.002
1/10/17 12:00:00 AM	2219.664612	8277.440186	19.86359406	CYCLIC	0.865	8.881	0.005
¥1¥17 12:00:00 AM	2220.529938	8286.320801	19.86852455	CYCLIC	0.727	7.850	0.003
¥12/17 12:00:00 AM	2221.257324	8294.170532	19.87106705	CYCLIC	0.498	6.915	0.002
1/13/17 12:00:00 AM	2221.755524	8301.085205	19.87340355	CYCLIC	0.146	5.917	0.002
1/14/17 12:00:00 AM	2221.902008	8307.001953	19.87539482	CYCLIC	0.130	5.322	0.002
1/15/17 12:00:00 AM	2222.032471	8312.324219	19.87723732	CYCLIC	0.067	4.922	0.002
1/16/17 12:00:00 AM	2222.099609	8317.246094	19.87889481	CYCLIC	0.046	4.713	0.002
1/17/17 12:00:00 AM	2222.145996	8321.959229	19.88090515	CYCLIC	1.069	3.318	0.002
¥18/17 12:00:00 AM	2223.214874	8325.27771	19.8825531	CYCLIC	0.302	5.443	0.004
11917 12:00:00 AM	2223.516998	8330.720215	19.88620186	CYCLIC	0.300	7.057	0.003
1/20/17 12:00:00 AM	2223.816681	8337.77771	19.88889503	CYCLIC	0.456	7.965	0.004
1217 12:00:00 AM	2224.272308	8345.742798	19.89325905	CYCLIC	0.563	6.889	0.003
1/22/17 12:00:00 AM	2224.835358	8352.631836	19.89593697	CYCLIC	0.473	8.690	0.005
1/23/17 12:00:00 AM	2225.307922	8361.321411	19.90096664	CYCLIC	0.852	6.938	0.003
1/24/17 12:00:00 AM	2226.160278	8368.259888	19.90407372	CYCLIC	0.315	6.367	0.002
1/25/17 12:00:00 AM	2226.475525	8374.626465	19.90641594	CYCLIC	0.090	5.661	0.002
1/26/17 12:00:00 AM	2226.565857	8380.287476	19.90858841	CYCLIC	0.033	5.143	0.002
1/27/17 12:00:00 AM	2226.598358	8385.430908	19.91077042	CYCLIC	0.018	4.816	0.002
1/28/17 12:00:00 AM	2226.616364	8390.247192	19.91285324	CYCLIC	0.129	4.656	0.002
1/29/17 12:00:00 AM	2226.745758	8394.903564	19.91517258	CYCLIC	0.211	4.555	0.002
1/30/17 12:00:00 AM	2226.957092	8399.458618	19.91717339	CYCLIC	0.038	4.403	0.002
1/31/17 12:00:00 AM	2226.995544	8403.861694	19.91935539	CYCLIC	0.037	4.224	0.002
2/1/17 12:00:00 AM	2227.032471	8408.085327	19.92162514	CYCLIC			


(~6		Waste Water	Total Flor	w Monthly Repo
	Carrosasa	Tracto Trato.	Total I Io	William Trop
		Start Date:	¥¥ 2017	
		End Date:	1/31/2017	
Day	Station 1	Station 2	Station 3	Station 1 + 2 total
1	0.585	2.675	0.001	3.260
2	0.661	2.727	0.001	3.388
3	0.964	3.364	0.002	4.328
4	0.231	5.665	0.003	5.896
5	0.009	4.778	0.002	4.787
6	0.038	4.249	0.000	4.287
7	0.159	4.451	0.000	4.610
8	0.862	8.639	0.000	9.501
9	0.598	7.107	0.000	7.705
10	0.865	8.881	0.005	9.746
11	0.727	7.850	0.000	8.577
12	0.498	6.915	0.000	7.413
13	0.146	5.917	0.002	6.063
14	0.130	5.322	0.002	5.453
15	0.067	4.922	0.002	4.989
16	0.046	4.713	0.002	4.760
17	1.069	3.318	0.002	4.387
18	0.302	5.443	0.000	5.745
19	0.300	7.057	0.000	7.357
20	0.456	7.965	0.000	8.421
21	0.563	6.889	0.003	7.452
22	0.473	8.690	0.000	9.162
23	0.852	6.938	0.000	7.791
24	0.315	6.367	0.002	6.682
25	0.090	5.661	0.002	5.751
26	0.639	2.134	0.000	2.773
27	0.626	2.167	0.000	2.793
28	0.129	4.656	0.002	4.786
29	0.211	4.555	0.002	4.766
30	0.038	4.403	0.000	4.442
31	0.037	4.224	0.000	4.261
Totals	12.654	164.418	0.035	177.072

AVEVA Reports

Creating reports in-house saves time and money and provides flexibility Reports can be generated in any format


Automatically get generated and distributed to clients- via email


CIQWS / eSMR / PET Tool Reporting

SSRS Report with lab and SCADA summaries from data warehouse, with custom SQL functions for required reporting parameters.

Output matches format of State Board Excel-based tool for electronic submission on SMR data.

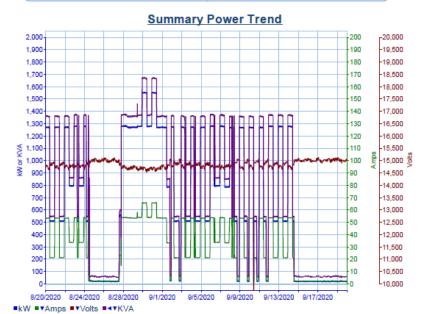
Power Quality Reporting

Luther Pass Pump Station Monthly Power Report

End Date:

2020-08-20 00:00:00 2020-09-20 00:00:00

Energy Consumption for Report Period


Begin	End	Consumption	
17,731,304 kWh	18,246,430 kWh	515,126 kWh	

Power Factor for Report Period

Minimum	Maximum	Average	
0.06	1.00	0.74	

Maximum Power Measurement

	Timestamp of Maximum Power	Maximum	
I	8/29/2020 22:10:00	1,561 kW	

Luther Pass Pump Station Monthly Power Report

Start Date:

2020-08-20 00:00:00 2020-09-20 00:00:00

Power by Pump Combination

Pumps Running	Elapsed Time	Energy Consumption	Demand (max kW)
Pump 1	4 hrs	0 kWh	0 kW
Pump 2	148 hrs	0 kWh	0 kW
Pump 3	39 hrs	0 kWh	0 kW
Pump 4	19 hrs	0 kWh	0 kW
Pump 1 and 2	0 hrs	0 kWh	0 kW
Pumps 1 and 3	0 hrs	0 kWh	0 kW
Pumps 1 and 4	0 hrs	0 kWh	0 kW
Pumps 2 and 3	96 hrs	0 kWh	0 kW
Pumps 2 and 4	177 hrs	514,948 kWh	1,561 kW
Pumps 3 and 4	23 hrs	0 kWh	0 kW
Pumps 1, 2 and 3	0 hrs	0 kWh	0 kW
Pumps 1, 2 and 4	0 hrs	0 kWh	0 kW
Pumps 1, 3 and 4	0 hrs	0 kWh	0 kW
Pumps 2, 3 and 4	0 hrs	0 kWh	0 kW

Power Alarms during Report Period

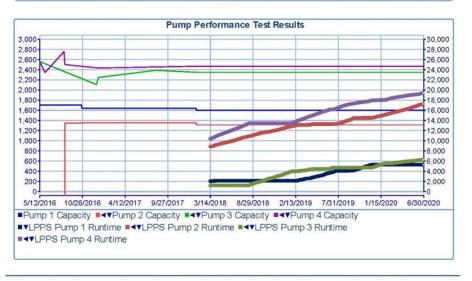
Alarm Time	Tag Nam e	Alarm Text

9/14/2020 13:14:34	R_LPPS_P4_MPR_Trip_Volt_Undr	LPPS Pump 4 MPR Undervoltage Trip
9/14/2020 13:14:17	R_LPPS_P1_PQM_Volt_Sag	LPPS Pump 1 Power Quality Meter Voltage Sag
9/14/2020 13:14:17	R_LPPS_P1_PQM_Phas_Loss	LPPS Pump 1 Power Quality Meter Volts Interrupt
9/14/2020 13:14:07	R_LPPS_P2_PQM_Phas_Loss	LPPS Pump 2 Power Quality Meter Voltage Interrupt
9/14/2020 13:14:07	R_LPPS_P2_PQM_Volt_Sag	LPPS Pump 2 Power Quality Meter Voltage Sag
9/14/2020 13:13:53	R_LPPS_P3_PQM_Volt_Sag	LPPS Pump 3 Power Quality Meter Voltage Sag
9/14/2020 13:13:53	R_LPPS_P3_PQM_Phas_Loss	LPPS Pump 3 Power Quality Meter Volts Interrupt
9/14/2020 13:13:34	R_LPPS_P4_PQM_Volt_Sag	LPPS Pump 4 Power Quality Meter Voltage Sag
9/14/2020 13:13:34	R_LPPS_P4_PQM_Phas_Loss	LPPS Pump 4 Power Quality Meter Voltage Interrupt
9/11/2020 22:00:40	R_LPPS_P1_PQM_Volt_Sag	LPPS Pump 1 Power Quality Meter Voltage Sag
9/11/2020 22:00:40	R_LPPS_P1_PQM_Phas_Loss	LPPS Pump 1 Power Quality Meter Volts Interrupt
9/11/2020 22:00:39	R_LPPS_P3_PQM_Volt_Sag	LPPS Pump 3 Power Quality Meter Voltage Sag
9/11/2020 22:00:39	R_LPPS_P3_PQM_Phas_Loss	LPPS Pump 3 Power Quality Meter Volts Interrupt
9/11/2020 22:00:39	R_LPPS_P2_PQM_Volt_Sag	LPPS Pump 2 Power Quality Meter Voltage Sag
9/11/2020 22:00:39	R_LPPS_P2_PQM_Phas_Loss	LPPS Pump 2 Power Quality Meter Voltage Interrupt
9/11/2020 22:00:38	R_LPPS_P4_PQM_Volt_Sag	LPPS Pump 4 Power Quality Meter Voltage Sag
9/11/2020 22:00:38	R_LPPS_P4_PQM_Phas_Loss	LPPS Pump 4 Power Quality Meter Voltage Interrupt
9/10/2020 09:32:49	R_LPPS_P3_MPR_Trip_Volt_Undr	LPPS Pump 3 MPR Undervoltage Trip
9/10/2020 09:32:49	R_LPPS_P1_MPR_Trip_Volt_Undr	

Pump Performance Report

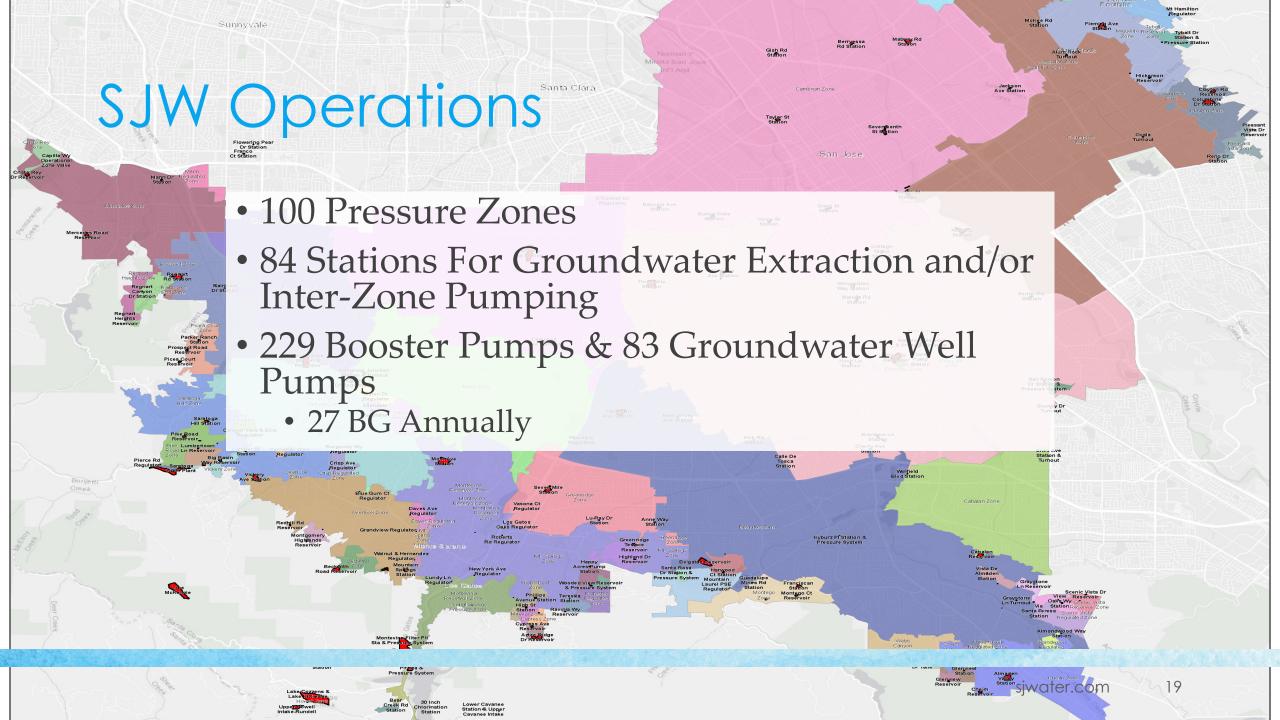
Luther Pass Pump Station Pump Performance Report

Start Date End Date: 2020-04-01 00:00:00 2020-07-01 00:00:00


Page 1 of 1

Performance Values from End of Report Period

	Pump 1	Pump 2	Pump 3	Pump 4
Design capacity	1,740 gpm	1,740 gpm	2,410 gpm	2,410 gpm
Tested capacity	1,599 gpm	1,312 gpm	2,347 gpm	2,467 gpm
Tested % of design	92 %	75 %	97 %	102 %
Tested efficiency	70.91 %	58.50 %	68.84 %	71.63 %

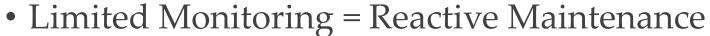

Maximum Measurements During Report Period

	Pump 1	Pump 2	Pump 3	Pump 4
Motor Vibration Inboard	0.07 in/s	0.09 in/s	0.12 in/s	0.20 in/s
Motor Vibration Outboard	0.06 in/s	0.10 in/s	0.16 in/s	0.18 in/s
Pump Vibration Inboard	0.08 in/s	0.85 in/s	0.16 in/s	0.92 in/s
Pump Vibration Outboard	0.08 in/s	0.55 in/s	0.27 in/s	0.64 in/s
Winding Temp.	108 °F	160 °F	221 °F	225 °F
Bearing Temp.	90 °F	144 °F	118 °F	154 °F
Housing Temp.	79 °F	70 °F	75 °F	77 °F

Generated: 2020-09-01 00:00

Costs of Pumping

- 92% of Energy Use
 - ~40,000,000 kWh



160% 140%

120% 100%

60%

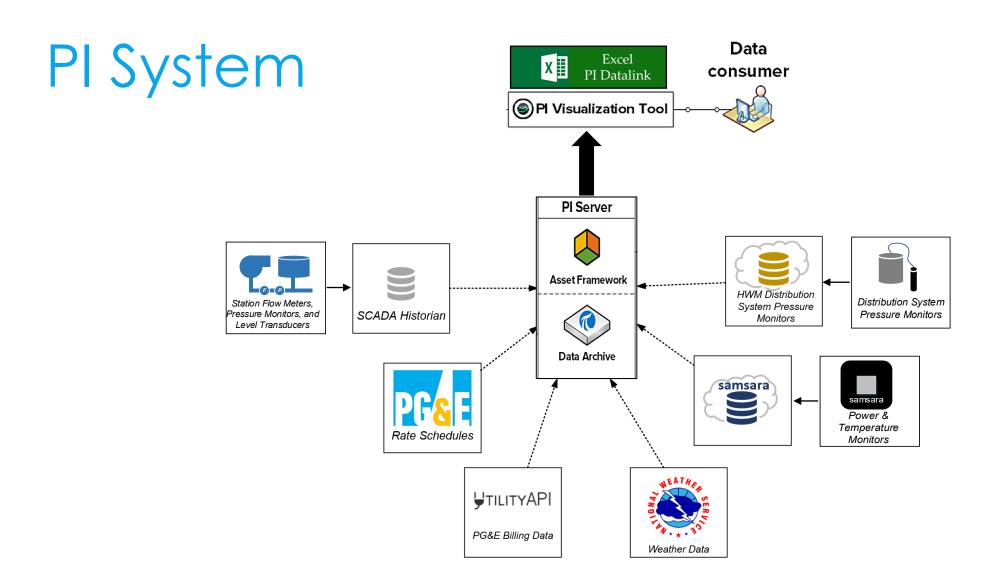
40% 20%

- System Strain
- Service Interruption
 More Costly Repair/Replacement

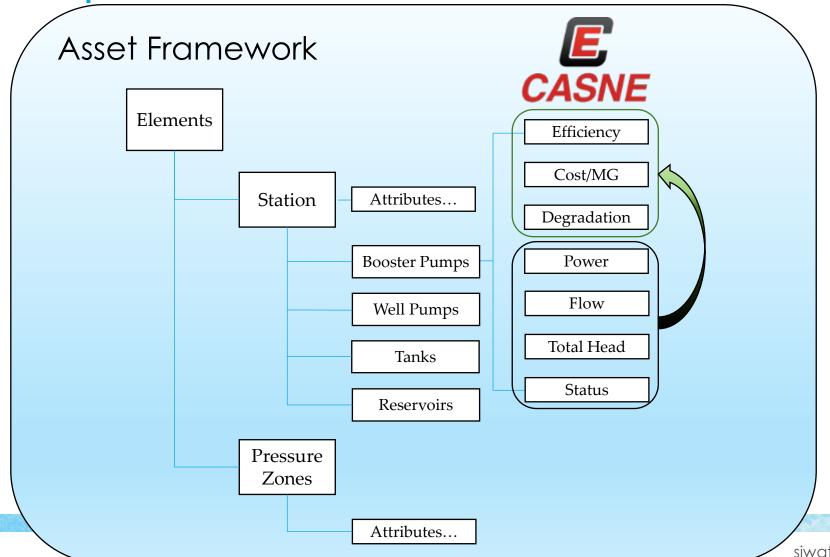
2017

2018

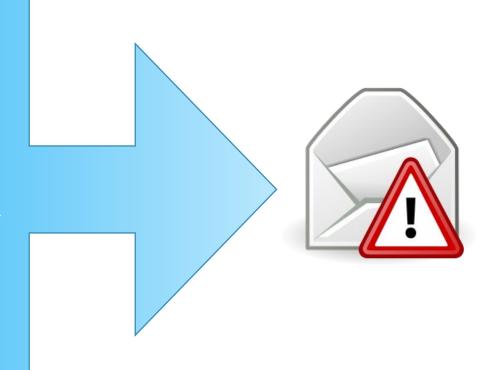
2019

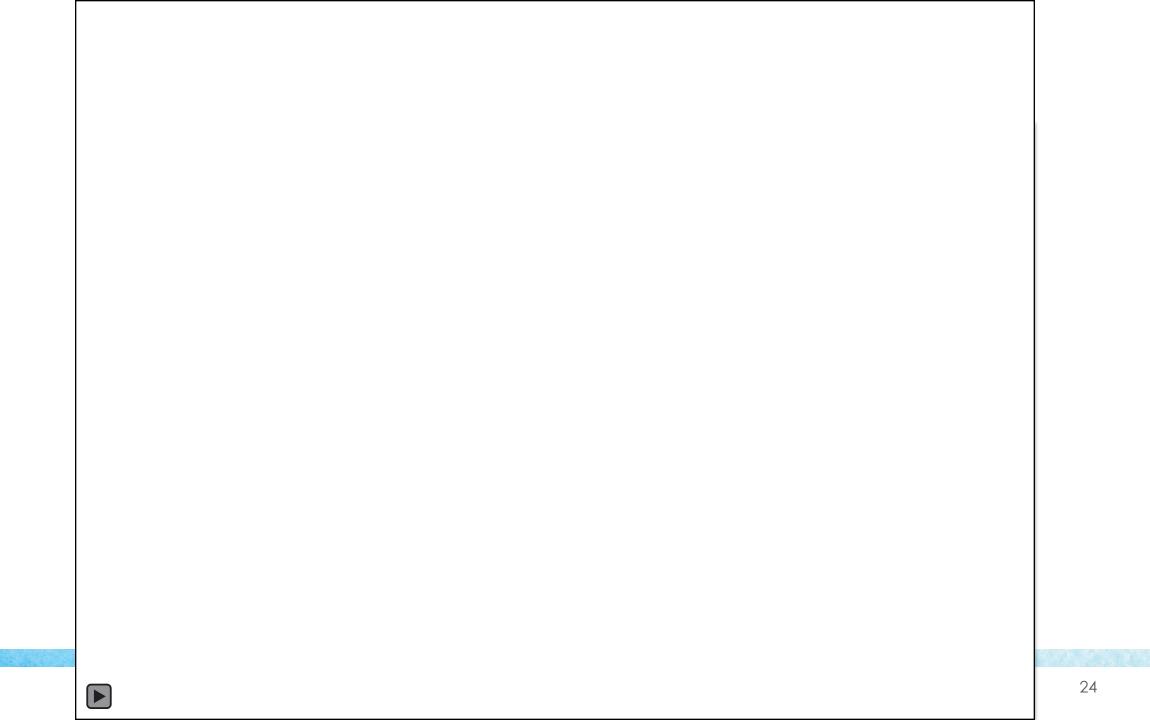

2020

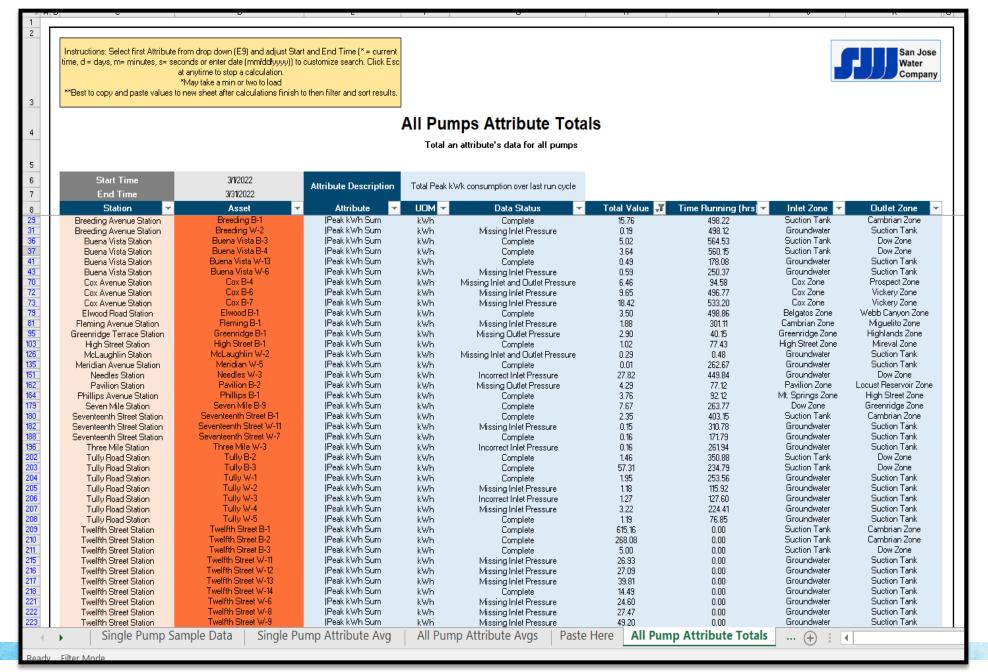
2021


2022

- Resource demanding
- Infrequent
 - Data is Often 2-5 Years Old


Implementation



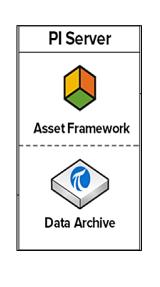

Application: Alerts

• Pump

- Efficiency < Threshold
- Pump Degradation > Threshold
- Max kW @ Peak ToU > Threshold
- Pump On @ Peak ToU

Expanding & Improving Coverage

- Calibration
- Replacement
- New Installation



Automated Pump Ranking

\$/MG

SCADA

- a) Control Variable A
 - 1. Pump B
 - 2. Pump A
 - 3. Pump C

b) ...

Estimated Savings

- Peak Off Peak = \$540,000 / Year
 - 30 Pumps/Mon Unintentionally On During Peak
- Prioritizing Most Efficient Pump = 2% Eff.
- 2% Efficiency == \$210,000 / Year
 - i.e., 800,000 kWh Reduction
 - = 564 metric tons of CO_2